iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis.
نویسندگان
چکیده
Iron (Fe) deficiency is a major constraint for plant growth and affects the quality of edible plant parts. To investigate the mechanisms underlying Fe homeostasis in plants, Fe deficiency-induced changes in the protein profile of Arabidopsis (Arabidopsis thaliana) roots were comprehensively analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) differential liquid chromatography-tandem mass spectrometry on a LTQ-Orbitrap with high-energy collision dissociation. A total of 4,454 proteins were identified with a false discovery rate of less than 1.1%, and 2,882 were reliably quantified. A subset of 101 proteins was differentially expressed upon Fe deficiency. The changes in protein profiles upon Fe deficiency show low congruency with previously reported alterations in transcript levels, indicating posttranscriptional changes, and provide complementary information on Fe deficiency-induced processes. The abundance of proteins involved in the synthesis/regeneration of S-adenosylmethionine, the phenylpropanoid pathway, the response to oxidative stress, and respiration was highly increased by Fe deficiency. Using Fe-responsive proteins as bait, genome-wide fishing for partners with predictable or confirmed interologs revealed that RNA processing and ribonucleoprotein complex assembly may represent critical processes that contribute to the regulation of root responses to Fe deficiency, possibly by biasing translation efficiency.
منابع مشابه
iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis.
The micronutrient zinc is essential for all living organisms, but it is toxic at high concentrations. Here, to understand the effects of excess zinc on plant cells, we performed an iTRAQ (for isobaric tags for relative and absolute quantification)-based quantitative proteomics approach to analyze microsomal proteins from Arabidopsis (Arabidopsis thaliana) roots. Our approach was sensitive enoug...
متن کاملUnraveling the iron deficiency responsive proteome in <i>Arabidopsis </i>shoot by iTRAQ-OFFGEL approach
Iron (Fe) is required by plants for basic redox reactions in photosynthesis and respiration, and for many other key enzymatic reactions in biological processes. Fe homeostatic mechanisms have evolved in plants to enable the uptake and sequestration of Fe in cells. To elucidate the network of proteins that regulate Fe homeostasis and transport, we optimized the iTRAQ-OFFGEL method to identify an...
متن کاملGENERAL CONTROL NONREPRESSED PROTEIN5-Mediated Histone Acetylation of FERRIC REDUCTASE DEFECTIVE3 Contributes to Iron Homeostasis in Arabidopsis.
Iron homeostasis is essential for plant growth and development. Here, we report that a mutation in GENERAL CONTROL NONREPRESSED PROTEIN5 (GCN5) impaired iron translocation from the root to the shoot in Arabidopsis (Arabidopsis thaliana). Illumina high-throughput sequencing revealed 879 GCN5-regulated candidate genes potentially involved in iron homeostasis. Chromatin immunoprecipitation assays ...
متن کاملQuantitative phosphoproteome profiling of iron-deficient Arabidopsis roots.
Iron (Fe) is an essential mineral nutrient for plants, but often it is not available in sufficient quantities to sustain optimal growth. To gain insights into adaptive processes to low Fe availability at the posttranslational level, we conducted a quantitative analysis of Fe deficiency-induced changes in the phosphoproteome profile of Arabidopsis (Arabidopsis thaliana) roots. Isobaric tags for ...
متن کاملIdentification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses
AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 155 2 شماره
صفحات -
تاریخ انتشار 2011